Kaiserslautern – Studie: Physiker erzeugen riesige Trilobiten-Moleküle
Kaiserslauterer Physikern um Professor Dr. Herwig Ott ist es erstmals gelungen, Trilobiten-Moleküle direkt zu beobachten. Diese sehr großen Moleküle haben ihren Namen wegen ihrer Ähnlichkeit mit fossilen Trilobiten. Aufgrund ihrer Größe haben sie die größten elektrischen Dipolmomente aller bisher bekannten Moleküle. Die Forscher haben eine spezielle Apparatur genutzt, mit der sich diese fragilen Moleküle bei extrem niedrigen Temperaturen erzeugen lassen. Die Ergebnisse sind wichtig, um ihre chemischen Bindungsmechanismen zu verstehen, die sich von allen anderen chemischen Bindungen unterscheiden. Die Studie wurde in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht.
Für ihr Experiment haben die Physiker eine Wolke aus Rubidium-Atomen verwendet, die im Ultrahochvakuum auf etwa 100 Mikrokelvin – 0,0001 Grad über dem absoluten Nullpunkt – abgekühlt wurde. Anschließend haben sie einige dieser Atome mit Lasern in einen sogenannten Rydberg-Zustand angeregt. „Dabei wird das jeweils äußerste Elektron in weit entfernte Bahnen um den Atomrumpf gebracht“, erklärt Professor Herwig Ott, der an der Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau (RPTU) zu ultrakalten Quantengasen und Quantenatomoptik forscht. „Der Bahnradius des Elektrons kann mehr als ein Mikrometer betragen, damit ist die Elektronenwolke größer als ein kleines Bakterium.“ Solche hochangeregten Atome bilden sich auch im interstellaren Raum und sind chemisch extrem reaktiv.
Befindet sich nun ein weiteres Atom innerhalb dieses riesigen Rydberg-Atoms, entsteht ein Molekül. Während herkömmliche chemische Bindungen entweder kovalent (Bindung über ein Elektronenpaar), ionisch (Bindung über positiv und negativ geladene Ionen), metallisch (frei bewegliche Elektronen) oder dipolarer Natur (Bindung durch Dipolkräfte) sind, werden die Trilobiten-Moleküle durch einen völlig anderen Mechanismus gebunden. „Es ist die quantenmechanische Streuung des Rydberg-Elektrons an dem Atom, die die beiden zusammenklebt“, sagt Max Althön, Erstautor der Studie. Althön weiter: „Stellen Sie sich vor, das Elektron umkreist den Atomkern in einer schnellen Umlaufbahn. Bei jeder Umrundung stößt es mit dem zweiten Atom zusammen. Im Gegensatz zu unserer Intuition lehrt uns die Quantenmechanik, dass es durch diese Kollisionen zu einer effektiven Anziehung zwischen dem Elektron und dem Atom kommt.“
Diese Moleküle besitzen erstaunliche Eigenschaften: Aufgrund der Wellennatur des Elektrons führen die Mehrfachkollisionen zu einem Interferenzmuster, das wie ein fossiler Trilobit aussieht. Außerdem ist die Bindungslänge des Moleküls so groß wie der Rydberg-Orbit – viel größer als bei jedem anderen zweiatomigen Molekül. Und weil das Elektron so stark von dem zweiten Atom angezogen wird, ist das permanente elektrische Dipolmoment mit mehr als 1700 Debye extrem groß.
Um diese Moleküle zu beobachten, haben die Wissenschaftler eine spezielle Vakuumapparatur entwickelt. Sie ermöglicht es, ultrakalte Atome durch Laserkühlung herzustellen und die Moleküle anschließend spektroskopisch nachzuweisen. Die Ergebnisse tragen zum Verständnis grundlegender Bindungsmechanismen zwischen Atomen im Grundzustand und Rydberg-Atomen bei, die in letzter Zeit auch zu einer Plattform für Quantencomputer-Anwendungen geworden sind. Die Entdeckung der Forscher ergänzt das Verständnis von Rydberg-Systemen, die exotisch und nützlich zugleich sein können.
Die Arbeiten zu dieser Studie fanden im Rahmen des Schwerpunktprogramms „Giant Interactions in Rydberg Systems“ statt, das von der Deutschen Forschungsgemeinschaft gefördert wird. Die Forschung wurde im Profilbereich OPTIMAS (Landesforschungszentrum für Optik und Materialwissenschaften) durchgeführt, der seit 2008 im Rahmen der Forschungsinitiative des Landes Rheinland-Pfalz gefördert wird.
Die Ergebnisse der Messungen und eine Beschreibung des Versuchsaufbaus sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht worden: „Exploring the vibrational series of pure trilobite Rydberg molecules“; Max Althön, Markus Exner, Richard Blättner & Herwig Ott
Aktuelle Beiträge
28. Januar 2025
Events
Zwischen Himmel und Erde – 3. À la carte der Deutschen Radio Philharmonie am 30. Januar 2025
30. Januar 2025 - 13:00 Uhr bis 23:59 Uhr
BUNT GEMISCHT
20. Juli 2023
26. September 2023
10. Mai 2023
6. April 2023
28. Juli 2023
26. Oktober 2023
13. Oktober 2023
14. Januar 2022
20. Juni 2023
5. April 2023
12. Juli 2023
20. März 2023
24. Juli 2023
5. Januar 2024
8. Mai 2023
19. April 2024
10. Mai 2023
16. Januar 2024
5. April 2023
26. Februar 2024
10. Juli 2023
11. September 2023
4. Juli 2023
21. April 2021
27. November 2024
21. Juli 2023
25. April 2023
29. März 2023
8. April 2021
19. Dezember 2022
15. Juni 2023
1. September 2024
26. Februar 2021
22. August 2023
6. Januar 2025
28. September 2022
20. Januar 2025
5. April 2023
3. Juli 2023
2. August 2023
1. Dezember 2020
11. September 2024